Potential Habitability and Biosignature Preservation at the Nili Trough Site

David J. Des Marais NASA, Ames Research Center, Moffett Field, CA

Key Factors Affecting Astrobiology Potential

- Diversity and geologic context
 - -Habitable conditions sometime in past
 - Diversity of habitable environments
 - -Duration of habitable conditions
- Preservation of key evidence
- Accessible by MSL rover

Range of Conditions that Sustains Life

Thriving in Darkness

Oxidation-reduction reactions can sustain life, even without photosynthesis (and without O_2)

Oxidants: O_2 ; CO_2 ; minerals/fluids with SO_x , Fe^{3+} , NO_x , etc.

Reductants: H_2 ; C_{red} ; minerals/fluids with S_{red} , NH_4 +, Fe^{2+} or other reduced species

Minerals must be identified comprehensively and definitively to search for potential habitats and life

Indian Ocean basalt 1200 m below sea floor (M. Fisk)

Indian

765E

30 C

Oregon dunite with microbes in galleries (Fisk et al., 2006)

Nili Fossae: Mafic source rock and altered product

Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome

Li-Hung Lin,^{1,2*} Pei-Ling Wang,³ Douglas Rumble,⁴ Johanna Lippmann-Pipke,⁵ Erik Boice,⁶ Lisa M. Pratt,⁶ Barbara Sherwood Lollar,⁷ Eoin L. Brodie,⁸ Terry C. Hazen,⁸ Gary L. Andersen,⁸ Todd Z. DeSantis,⁸ Duane P. Moser,⁹ Dave Kershaw,¹⁰ T. C. Onstott¹

Geochemical, microbiological, and molecular analyses of alkaline saline groundwater at 2.8 kilometers depth in Archaean metabasalt revealed a microbial biome dominated by a single phylotype affiliated with thermophilic sulfate reducers belonging to *Firmicutes*. These sulfate reducers were sustained by geologically produced sulfate and hydrogen at concentrations sufficient to maintain activities for millions of years with no apparent reliance on photosynthetically derived substrates.

Duration of Habitable Conditions

- Fluvio-lacustrine features and location consistent with confluence of long-term regional drainage
- Near-subsurface deposits consistent with widespread evidence of persistent near-subsurface aqueous environments

Stratigraphy and Processes in Isidis-Nili Fossae

Isidis Basin and Syrtis
Major lavas are major
time-stratigraphic markers

Significant gradation (sedimentary? aeolian? alluvial?) between Isidis basin formation and Syrtis lava emplacement

How does this constrain habitability?

Conditions That Could Sustain Life on Mars: Changes Over the Eons

Preservation of Key Evidence

- Primary productivity: higher is better; but on Earth, oxygenic photosynthesis is major factor
- Protection from destructive agents is critical
 - Organisms, thermal, oxidation
- Preservation enhancers
 - Reducing conditions
 - Sequestration in phyllosilicates, silica, carbonates, evaporites, etc.
 - Burial

Minerals & Rocks that Preserve Fossil Records

Residence Time

Least Stable

Dominant Process Controlling Loss

<1x10⁴ yrs

lce

Climatic warming

<1x10⁶ yrs

Halides, sulfates

Dissolution

<2x10⁸ yrs

Metallic sulfides

Oxidation

 $< 3.5 \times 10^{8} \text{ yrs}$

Clay-rich shales Water-laid pyroclastics Recrystallization **Marine carbonates Metallic oxides**

Metamorphism Dissolution

<3.8x10⁸ yrs

Phosphates Silica

Deep burial Recrystallization Metamorphism

Most Stable

Access to Key Geologic Units

- Accessible terrane
- Exhumed subsurface deposits
- Fluvio-lacustrine deposits
- Relatively unaltered by weathering

Stratigraphy and Processes in Isidis-Nili Fossae

Isidis Basin and Syrtis
Major lavas are major
time-stratigraphic markers

Significant gradation (sedimentary? aeolian? alluvial?) between Isidis basin formation and Syrtis lava emplacement

How does this constrain habitability?

5 kilometers

(Representative vertical and horizontal distances, not to scale)

Low-Ca Pyroxene Phyllosilicate Fe-Phyllosilicate

Nili Fossae, Mars MRO CRISM VIS/NIR J. Mustard, et al., 2007

Unaltered basement enriched in low-Ca pyroxene as capping unit and on the floor

Thick section of phyllosilicate-rich Noachian basement exposed in Fossae walls

Phyllosilicate-bearing basement beneath volcanics

Syrtis Major Volcanics

Microbial Communities in Hypersaline Environments

